首页> 外文OA文献 >Decoding Sentiment from Distributed Representations of Sentences
【2h】

Decoding Sentiment from Distributed Representations of Sentences

机译:从分布式句子表征中解读情感

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Distributed representations of sentences have been developed recently torepresent their meaning as real-valued vectors. However, it is not clear howmuch information such representations retain about the polarity of sentences.To study this question, we decode sentiment from unsupervised sentencerepresentations learned with different architectures (sensitive to the order ofwords, the order of sentences, or none) in 9 typologically diverse languages.Sentiment results from the (recursive) composition of lexical items andgrammatical strategies such as negation and concession. The results aremanifold: we show that there is no `one-size-fits-all' representationarchitecture outperforming the others across the board. Rather, the top-rankingarchitectures depend on the language and data at hand. Moreover, we find thatin several cases the additive composition model based on skip-gram word vectorsmay surpass supervised state-of-art architectures such as bidirectional LSTMs.Finally, we provide a possible explanation of the observed variation based onthe type of negative constructions in each language.
机译:最近已经开发了句子的分布式表示,以将其含义表示为实值向量。但是,尚不清楚此类表示形式保留了多少有关句子极性的信息。为研究此问题,我们从9种类型学上从采用不同体系结构(对单词顺序,句子顺序或无顺序敏感)学习的无监督句子表示中解码情感情感来自词汇项目的(递归)组合和否定和让步等语法策略。结果是多种多样的:我们表明,没有一种“一刀切”的架构在整体上胜过其他架构。相反,排名靠前的体系结构取决于手头的语言和数据。此外,我们发现在某些情况下,基于跳跃语法词向量的加法组成模型可能会超越监督的最新体系结构(例如双向LSTM)。最后,我们提供了基于每种负结构的类型观察到的变化的可能解释语言。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号